skip to main content


Search for: All records

Creators/Authors contains: "Chandra, Naveen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO 2 ), yet estimates of air-sea CO 2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO 2 exchange by relating fluxes to horizontal and vertical CO 2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO 2 gradient provide robust flux constraints. We found an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO 2 ( P co 2 )–based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations. 
    more » « less
  2. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biospherein a changing climate – the “global carbon budget” – is important tobetter understand the global carbon cycle, support the development ofclimate policies, and project future climate change. Here we describe andsynthesize data sets and methodology to quantify the five major componentsof the global carbon budget and their uncertainties. Fossil CO2emissions (EFOS) are based on energy statistics and cement productiondata, while emissions from land-use change (ELUC), mainlydeforestation, are based on land use and land-use change data andbookkeeping models. Atmospheric CO2 concentration is measured directlyand its growth rate (GATM) is computed from the annual changes inconcentration. The ocean CO2 sink (SOCEAN) and terrestrialCO2 sink (SLAND) are estimated with global process modelsconstrained by observations. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the lastdecade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), andELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ±  0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budgetimbalance BIM of −0.1 GtC yr−1 indicating a near balance betweenestimated sources and sinks over the last decade. For the year 2019 alone, thegrowth in EFOS was only about 0.1 % with fossil emissions increasingto 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEANwas 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminarydata for 2020, accounting for the COVID-19-induced changes in emissions,suggest a decrease in EFOS relative to 2019 of about −7 % (medianestimate) based on individual estimates from four studies of −6 %, −7 %,−7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in thecomponents of the global carbon budget are consistently estimated over theperiod 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for therepresentation of semi-decadal variability in CO2 fluxes. Comparison ofestimates from diverse approaches and observations shows (1) no consensusin the mean and trend in land-use change emissions over the last decade, (2)a persistent low agreement between the different methods on the magnitude ofthe land CO2 flux in the northern extra-tropics, and (3) an apparentdiscrepancy between the different methods for the ocean sink outside thetropics, particularly in the Southern Ocean. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set (Friedlingstein et al.,2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014,2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020). 
    more » « less
  3. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biosphere– the “global carbon budget” – is important to better understand theglobal carbon cycle, support the development of climate policies, andproject future climate change. Here we describe data sets and methodology toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFF) are based on energystatistics and cement production data, while emissions from land use change(ELUC), mainly deforestation, are based on land use and land use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly and its growth rate (GATM) is computed from the annual changesin concentration. The ocean CO2 sink (SOCEAN) and terrestrialCO2 sink (SLAND) are estimated with global process modelsconstrained by observations. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the lastdecade available (2009–2018), EFF was 9.5±0.5 GtC yr−1,ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budgetimbalance BIM of 0.4 GtC yr−1 indicating overestimated emissionsand/or underestimated sinks. For the year 2018 alone, the growth in EFF wasabout 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history,ELUC was 1.5±0.7 GtC yr−1, for total anthropogenicCO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of−0.2 % to 1.5 %) based on national emissions projections for China, theUSA, the EU, and India and projections of gross domestic product correctedfor recent changes in the carbon intensity of the economy for the rest ofthe world. Overall, the mean and trend in the five components of the globalcarbon budget are consistently estimated over the period 1959–2018, butdiscrepancies of up to 1 GtC yr−1 persist for the representation ofsemi-decadal variability in CO2 fluxes. A detailed comparison amongindividual estimates and the introduction of a broad range of observationsshows (1) no consensus in the mean and trend in land use change emissionsover the last decade, (2) a persistent low agreement between the differentmethods on the magnitude of the land CO2 flux in the northernextra-tropics, and (3) an apparent underestimation of the CO2variability by ocean models outside the tropics. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set (Le Quéré etal., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated bythis work are available at https://doi.org/10.18160/gcp-2019 (Friedlingsteinet al., 2019). 
    more » « less