Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC) are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The global net uptake of CO2 by the ocean (SOCEAN, called the ocean sink) is estimated with global ocean biogeochemistry models and observation-based fCO2 products (fCO2 is the fugacity of CO2). The global net uptake of CO2 by the land (SLAND, called the land sink) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The sum of all sources and sinks results in the carbon budget imbalance (BIM), a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2023, EFOS increased by 1.3 % relative to 2022, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (10.3 ± 0.5 GtC yr−1 when the cement carbonation sink is not included), and ELUC was 1.0 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 ± 0.9 GtC yr−1 (40.6 ± 3.2 GtCO2 yr−1). Also, for 2023, GATM was 5.9 ± 0.2 GtC yr−1 (2.79 ± 0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 2.3 ± 1.0 GtC yr−1, with a near-zero BIM (−0.02 GtC yr−1). The global atmospheric CO2 concentration averaged over 2023 reached 419.31 ± 0.1 ppm. Preliminary data for 2024 suggest an increase in EFOS relative to 2023 of +0.8 % (−0.2 % to 1.7 %) globally and an atmospheric CO2 concentration increase by 2.87 ppm, reaching 422.45 ppm, 52 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2023, with a near-zero overall budget imbalance, although discrepancies of up to around 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the mean ocean sink. This living-data update documents changes in methods and datasets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at https://doi.org/10.18160/GCP-2024 (Friedlingstein et al., 2024).more » « lessFree, publicly-accessible full text available March 14, 2026
-
The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO 2 ), yet estimates of air-sea CO 2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO 2 exchange by relating fluxes to horizontal and vertical CO 2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO 2 gradient provide robust flux constraints. We found an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO 2 ( P co 2 )–based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations.more » « less
-
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based fCO2 products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2022, EFOS increased by 0.9 % relative to 2021, with fossil emissions at 9.9±0.5 Gt C yr−1 (10.2±0.5 Gt C yr−1 when the cement carbonation sink is not included), and ELUC was 1.2±0.7 Gt C yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1±0.8 Gt C yr−1 (40.7±3.2 Gt CO2 yr−1). Also, for 2022, GATM was 4.6±0.2 Gt C yr−1 (2.18±0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.8±0.4 Gt C yr−1, and SLAND was 3.8±0.8 Gt C yr−1, with a BIM of −0.1 Gt C yr−1 (i.e. total estimated sources marginally too low or sinks marginally too high). The global atmospheric CO2 concentration averaged over 2022 reached 417.1±0.1 ppm. Preliminary data for 2023 suggest an increase in EFOS relative to 2022 of +1.1 % (0.0 % to 2.1 %) globally and atmospheric CO2 concentration reaching 419.3 ppm, 51 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2022, with a near-zero overall budget imbalance, although discrepancies of up to around 1 Gt C yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living-data update documents changes in methods and data sets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at https://doi.org/10.18160/GCP-2023 (Friedlingstein et al., 2023).more » « less
-
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biospherein a changing climate – the “global carbon budget” – is important tobetter understand the global carbon cycle, support the development ofclimate policies, and project future climate change. Here we describe andsynthesize data sets and methodology to quantify the five major componentsof the global carbon budget and their uncertainties. Fossil CO2emissions (EFOS) are based on energy statistics and cement productiondata, while emissions from land-use change (ELUC), mainlydeforestation, are based on land use and land-use change data andbookkeeping models. Atmospheric CO2 concentration is measured directlyand its growth rate (GATM) is computed from the annual changes inconcentration. The ocean CO2 sink (SOCEAN) and terrestrialCO2 sink (SLAND) are estimated with global process modelsconstrained by observations. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the lastdecade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), andELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budgetimbalance BIM of −0.1 GtC yr−1 indicating a near balance betweenestimated sources and sinks over the last decade. For the year 2019 alone, thegrowth in EFOS was only about 0.1 % with fossil emissions increasingto 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEANwas 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminarydata for 2020, accounting for the COVID-19-induced changes in emissions,suggest a decrease in EFOS relative to 2019 of about −7 % (medianestimate) based on individual estimates from four studies of −6 %, −7 %,−7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in thecomponents of the global carbon budget are consistently estimated over theperiod 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for therepresentation of semi-decadal variability in CO2 fluxes. Comparison ofestimates from diverse approaches and observations shows (1) no consensusin the mean and trend in land-use change emissions over the last decade, (2)a persistent low agreement between the different methods on the magnitude ofthe land CO2 flux in the northern extra-tropics, and (3) an apparentdiscrepancy between the different methods for the ocean sink outside thetropics, particularly in the Southern Ocean. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set (Friedlingstein et al.,2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014,2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).more » « less
-
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biosphere– the “global carbon budget” – is important to better understand theglobal carbon cycle, support the development of climate policies, andproject future climate change. Here we describe data sets and methodology toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFF) are based on energystatistics and cement production data, while emissions from land use change(ELUC), mainly deforestation, are based on land use and land use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly and its growth rate (GATM) is computed from the annual changesin concentration. The ocean CO2 sink (SOCEAN) and terrestrialCO2 sink (SLAND) are estimated with global process modelsconstrained by observations. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the lastdecade available (2009–2018), EFF was 9.5±0.5 GtC yr−1,ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budgetimbalance BIM of 0.4 GtC yr−1 indicating overestimated emissionsand/or underestimated sinks. For the year 2018 alone, the growth in EFF wasabout 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history,ELUC was 1.5±0.7 GtC yr−1, for total anthropogenicCO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of−0.2 % to 1.5 %) based on national emissions projections for China, theUSA, the EU, and India and projections of gross domestic product correctedfor recent changes in the carbon intensity of the economy for the rest ofthe world. Overall, the mean and trend in the five components of the globalcarbon budget are consistently estimated over the period 1959–2018, butdiscrepancies of up to 1 GtC yr−1 persist for the representation ofsemi-decadal variability in CO2 fluxes. A detailed comparison amongindividual estimates and the introduction of a broad range of observationsshows (1) no consensus in the mean and trend in land use change emissionsover the last decade, (2) a persistent low agreement between the differentmethods on the magnitude of the land CO2 flux in the northernextra-tropics, and (3) an apparent underestimation of the CO2variability by ocean models outside the tropics. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set (Le Quéré etal., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated bythis work are available at https://doi.org/10.18160/gcp-2019 (Friedlingsteinet al., 2019).more » « less
-
Abstract. Understanding and quantifying the global methane (CH4) budgetis important for assessing realistic pathways to mitigate climate change.Atmospheric emissions and concentrations of CH4 continue to increase,making CH4 the second most important human-influenced greenhouse gas interms of climate forcing, after carbon dioxide (CO2). The relativeimportance of CH4 compared to CO2 depends on its shorteratmospheric lifetime, stronger warming potential, and variations inatmospheric growth rate over the past decade, the causes of which are stilldebated. Two major challenges in reducing uncertainties in the atmosphericgrowth rate arise from the variety of geographically overlapping CH4sources and from the destruction of CH4 by short-lived hydroxylradicals (OH). To address these challenges, we have established aconsortium of multidisciplinary scientists under the umbrella of the GlobalCarbon Project to synthesize and stimulate new research aimed at improvingand regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paperdedicated to the decadal methane budget, integrating results of top-downstudies (atmospheric observations within an atmospheric inverse-modellingframework) and bottom-up estimates (including process-based models forestimating land surface emissions and atmospheric chemistry, inventories ofanthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated byatmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximumestimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or∼ 60 % is attributed to anthropogenic sources, that isemissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009),and 24 Tg CH4 yr−1 larger than the one reported in the previousbudget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4emissions have been tracking the warmest scenarios assessed by theIntergovernmental Panel on Climate Change. Bottom-up methods suggest almost30 % larger global emissions (737 Tg CH4 yr−1, range 594–881)than top-down inversion methods. Indeed, bottom-up estimates for naturalsources such as natural wetlands, other inland water systems, and geologicalsources are higher than top-down estimates. The atmospheric constraints onthe top-down budget suggest that at least some of these bottom-up emissionsare overestimated. The latitudinal distribution of atmosphericobservation-based emissions indicates a predominance of tropical emissions(∼ 65 % of the global budget, < 30∘ N)compared to mid-latitudes (∼ 30 %, 30–60∘ N)and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methanebudget is attributable to natural emissions, especially those from wetlandsand other inland waters. Some of our global source estimates are smaller than those in previouslypublished budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due toimproved partition wetlands and other inland waters. Emissions fromgeological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overalldiscrepancy between bottom-up and top-down estimates has been reduced byonly 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methanebudget include (i) a global, high-resolution map of water-saturated soilsand inundated areas emitting methane based on a robust classification ofdifferent types of emitting habitats; (ii) further development ofprocess-based models for inland-water emissions; (iii) intensification ofmethane observations at local scales (e.g., FLUXNET-CH4 measurements)and urban-scale monitoring to constrain bottom-up land surface models, andat regional scales (surface networks and satellites) to constrainatmospheric inversions; (iv) improvements of transport models and therepresentation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/orco-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded fromhttps://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from theGlobal Carbon Project.more » « less
An official website of the United States government
